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Abstract. We consider perturbations of Dirac type operators on com-
plete, connected metric spaces equipped with a doubling measure. Un-
der a suitable set of assumptions, we prove quadratic estimates for such
operators and hence deduce that these operators have a bounded func-
tional calculus. In particular, we deduce a Kato square root type esti-
mate.

1. Introduction

Let X be a complete, connected metric space and µ a Borel-regular dou-
bling measure. We consider densely-defined, closed, nilpotent operators Γ
on L2(X ,CN ) and perturbed Dirac type operators ΠB = Γ+B1Γ∗B2, where
Bi are strictly accretive L∞ matrix valued functions. We prove quadratic
estimates ˆ ∞

0

∥∥tΠB(1 + t2ΠB)−1u
∥∥2 dt

t
' ‖u‖2

for u ∈ R(ΠB) under a set of hypotheses (H1)-(H8). These estimates are
equivalent to ΠB having a bounded holomorphic functional calculus. This

allows us to conclude that D(
√

Π2
B) = D(ΠB) = D(Γ) ∩ D(B1Γ∗B2) and

that
∥∥∥√Π2

Bu
∥∥∥ ' ‖ΠBu‖ ' ‖Γu‖ + ‖B1Γ∗B2u‖. When X = Rn and µ is

the Lebesgue measure, it is shown by Axelsson, Keith and McIntosh in [5]
that this implies D(

√
−divA∇)) = D(∇) and

∥∥√−divA∇u
∥∥ ' ‖∇u‖ for

an appropriate class of perturbations A. Thus, we are justified in calling
this a Kato square root type estimate.

We proceed to prove our theorem based on the ideas presented in [5].
These ideas date back to the resolution of the Kato conjecture by Auscher,
Hofmann, Lacey, McIntosh and Tchamitchian in [2]. The exposition [10] by
Hofmann is an excellent survey of the history and resolution of the Kato
conjecture. Further historical references include the article [13] by McIn-
tosh and [3] by Auscher and Tchamitchian. More recently, the proof in [5]
was generalised by Morris in [15] for complete Riemannian manifolds with
exponential volume growth. This work is beneficial to us since we rely upon
the same abstract dyadic decomposition of Christ in [7].
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The main novelty of the work presented here is that we have separated the
assumptions on the operator Γ from the underlying differentiable structure of
the space. In general, the spaces we consider may not admit a differentiable
structure. However, we are motivated by the existence of measure metric
spaces more general than Riemannian manifolds admitting such structures.
See the work of Cheeger in [6] and of Keith in [12].

In our exposition, we follow the structure of the proof in [5]. We rephrase
the proof purely in terms of Lipschitz functions. We use an upper gradient
quantity, namely the pointwise Lipschitz constant, as a replacement for a
gradient. This is the key feature that allows us to generalise the proof in
[5].

The structure of this paper is as follows. In §2, we state the hypotheses
(H1)-(H8) under which we obtain the quadratic estimates and state the main
results. We devote §3 to illustrating some important consequences of the
dyadic decomposition in [7]. In §4, we present some results about Carleson
measures and maximal functions on doubling measure metric spaces. These
tools are crucial since the proof of the main result proceeds by reducing the
main estimate to a Carleson measure estimate. Lastly, we give a proof of the
main theorem in §5, taking care to avoid unnecessary repetition of the work
of [5] and [15], and highlight the key differences which we have introduced.

2. Hypotheses and the main results

We list a set of hypotheses (H1)-(H8). These assumptions are similar
those in [5], with the exception of (H6) and (H8) which require modification
due to the lack of a differentiable structure in our setting. The assumptions
(H1)-(H3) are purely operator theoretic and thus hold in sufficient generality.
They are taken in verbatim from [5] but we list them here for completeness.
We emphasise that here, H denotes an abstract Hilbert space.

(H1) The operator Γ : D(Γ)→H is closed, densely-defined and nilpotent
(Γ2 = 0).

(H2) The operators B1, B2 ∈ L(H ) satisfy

Re 〈B1u, u〉 ≥ κ1 ‖u‖ whenever u ∈ R(Γ∗),

Re 〈B2u, u〉 ≥ κ2 ‖u‖ whenever u ∈ R(Γ)

where κ1, κ2 > 0 are constants.
(H3) The operators B1, B2 satisfy

B1B2(R(Γ)) ⊂ N (Γ) and B2B1(R(Γ∗)) ⊂ N (Γ∗).

The full implications of these assumptions are listed in §4 in [5]. However,
for the sake of convenience, we include some relevant details from this ref-
erence. Define Γ∗B = B1Γ∗B2, ΠB = Γ + Γ∗B and Π = Γ + Γ∗. Furthermore,
define the following associated bounded operators:

RBt = (1 + itΠB)−1, PBt = (1 + t2Π2
B)−1,

QBt = tΠB(1 + t2Π2
B)−1, ΘB

t = tΓ∗B(1 + t2Π2
B)−1,

and write Rt, Pt, Qt,Θt by setting B1 = B2 = 1. With this in mind, we
bring the attention of the reader to the following important proposition.
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Proposition 2.1 (Proposition 4.8 of [5]). Suppose that (Γ, B1, B2) satisfy
the hypotheses (H1)-(H3) and that there exists c > 0 such thatˆ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
≤ c ‖u‖2

for all u ∈ R(Γ), together with three similar estimates obtained by replac-
ing (Γ, B1, B2) by (Γ∗, B2, B1), (Γ∗, B2

∗, B1
∗) and (Γ, B1

∗, B2
∗). Then, ΠB

satisfies ˆ ∞
0

∥∥QBt u∥∥2 dt

t
' ‖u‖2

for all u ∈ R(ΠB) ⊂H . Thus, ΠB has a bounded H∞ functional calculus.

For a fuller treatment of the theory of sectorial operators and holomorphic
functional calculi, see [1] by Albrecht, Duong and McIntosh, and [11] by
Kato. Furthermore, Morris deals with local quadratic estimates and their
functional calculus implications in [14].

It is the conclusion of the above proposition that is our primary objective.
We note as do the authors of [5] that we require additional assumptions on X
and (Γ, B1, B2) in order to satisfy the hypothesis of the proposition. Thus,
we start with the following definition.

Definition 2.2 (Doubling measure). We say that µ is a doubling measure
on X if there exists a constant CD ≥ 1 such that for all x ∈ X and r > 0,

0 < µ(B(x, 2r)) ≤ CDµ(B(x, r)) <∞.
We call CD the doubling constant and we let p = log2(CD).

It is, in fact, easy to show that a measure is doubling if and only if
µ(B(x, κr)) ≤ CDκpµ(B(x, r)) whenever κ > 1.

We are now in a position to list (H4) and (H5).

(H4) Let X be a complete, connected metric space and µ a Borel-regular
measure on X that is doubling. Then set H = L2(X ,CN ; dµ).

(H5) Bi ∈ L∞(X ,L(CN )) for i = 1, 2.

For convenience, we write H = L2(X ) or L2(X ,CN ).
Note that the two hypotheses above are the obvious adaptations of (H4)

and (H5) in [5]. The matter of (H6) is a little more complicated since (H6) of
[5] and [15] involves ∇ which in general does not exist for us. To circumvent
this obstacle, we define the following quantity.

Definition 2.3 (Pointwise Lipschitz constant). For ξ : X → CN Lipschitz,
define Lip ξ : X → R by

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

.

We take the convention that Lip ξ(x) = 0 when x is an isolated point.

Letting Lip ξ denote the Lipschitz constant of ξ, we note that by con-
struction, Lip ξ(x) ≤ Lip ξ for all x ∈ X . Also, Lip ξ is a Borel function
and therefore measurable. Many of the properties of Lip ξ are described in
greater detail in [6]. We note that it is from this reference that we have
borrowed this notation and the term “pointwise Lipschitz constant.”
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(H6) For every bounded Lipschitz function ξ : X → C, multiplication
by ξ preserves D(Γ) and Mξ = [Γ, ξI] is a multiplication operator.
Furthermore, there exists a constant m > 0 such that |Mξ(x)| ≤
m |Lip ξ(x)| for almost all x ∈ X .

We note that this implies the same hypothesis when Γ is replaced by Γ∗

and Π. This observation is made in [15] and originated in [4].
When X = Rn and µ is the Lebesgue measure (the setting in [5]), our (H6)

is automatically satisfied since |∇ξ(x)| = |Lip ξ(x)| for almost all x ∈ Rn.
The following is called the cancellation hypothesis. In the work of [15]

and [4], this hypothesis is replaced by a weaker estimate which is applicable
for local quadratic estimates as described by Morris in [14]. The estimates
we require are global and thus we assume the cancellation hypothesis in [5].
We denote the support of a function f by spt f .

(H7) For each open ball B, we haveˆ
B

Γu dµ = 0 and

ˆ
B

Γ∗v dµ = 0

for all u ∈ D(Γ) with spt u ⊂ B and for all v ∈ D(Γ∗) with spt v ⊂
B.

The last assumption is a Poincaré hypothesis. In [15], a Poincaré inequal-
ity on balls is assumed as a separate hypothesis. Their (H8) is a coercivity
assumption following [5]. In our work, we find that a Poincaré type hypoth-
esis with respect to the unperturbed operator Π is a sensible substitution.

(H8) There exists C ′ > 0 and c > 0 such that for all balls B = B(y, r)ˆ
B
|u(x)− uB|2 dµ(x) ≤ C ′r2

ˆ
cB
|Πu(x)|2 dµ(x)

for all u ∈ R(Π) ∩ D(Π).

The authors of [5] reveal that (H1)-(H3) are adequate to set up the nec-
essary operator theoretic framework. However, as we have noted before, the
full set of assumptions (H1)-(H8) are necessary to obtain the desired esti-
mates. It is under these assumptions that we present the main theorem of
this paper.

Theorem 2.4. Let X , (Γ, B1, B2) satisfy (H1)-(H8). Then, ΠB satisfies
the quadratic estimate ˆ ∞

0

∥∥QBt u∥∥2 dt

t
' ‖u‖2

for all u ∈ R(ΠB) ⊂ L2(X ,CN ) and hence has a bounded H∞ functional
calculus.

Let E±B = χ±(ΠB), where χ+(ζ) = 1 when Re (ζ) > 0 and 0 otherwise,
and similarly, χ−(ζ) = 1 when Re (ζ) < 0 and 0 otherwise. We have the
following corollary resembling Corollary 2.11 in [5].

Corollary 2.5 (Kato square root type estimate).

(i) There is a spectral decomposition

L2(X ,CN ) = N (ΠB)⊕ E+
B ⊕ E

−
B

(where the sum is in general non-orthogonal), and
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(ii) D(Γ) ∩ D(Γ∗B) = D(ΠB) = D(
√

Π2
B) with

‖Γu‖+ ‖ΓBu‖ ' ‖ΠBu‖ '
∥∥∥∥√Π2

Bu

∥∥∥∥
for all u ∈ D(ΠB).

3. Abstract dyadic decomposition

We begin this section by quoting Theorem 11 in [7].

Theorem 3.1. There exists a countable collection of open subsets{
Qkα ⊂ X : k ∈ Z, α ∈ Ik

}
with each zkα ∈ Qkα, where Ik are index sets (possibly finite), and constants
δ ∈ (0, 1), a0 > 0, η > 0 and C1, C2 <∞ satisfying:

(i) For all k ∈ Z, µ(X \ ∪αQkα) = 0,
(ii) If l ≥ k, either Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅,

(iii) For each (k, α) and each l < k there exists a unique β such that Qkα ⊂
Qlβ,

(iv) diamQkα ≤ C1δ
k,

(v) B(zkα, a0δ
k) ⊂ Qkα,

(vi) For all k, α and for all t > 0, µ
{
x ∈ Qkα : d(x,X \Qkα) ≤ tδk

}
≤

C2t
ηµ(Qkα).

Define Qk =
{
Qkα : α ∈ Ik

}
to be the level k dyadic cubes and Q = ∪kQk

to be the collection of dyadic cubes. For Qkα ∈ Qk, define the length as
`(Qkα) = δk and the centre as zkα.

It is easy to see that each Qk is a mutually disjoint collection. Fur-
thermore, we have ∂(∪Qk) = ∪Q∈Qk∂Q. These facts coupled with the

assumption µ(B(x, r)) > 0 implies that X = ∪Qk.
Fix a cube Q ∈ Qj and denote the centre of this cube by z. We are

interested in counting the number of cubes inside “shells” centred from this
cube. We begin with the following definition.

Definition 3.2. Whenever k ≥ 1, define

Ck =
{
Qjα ∈ Qj : (k − 1)C1δ

j ≤ d(z, zjα) ≤ kC1δ
j
}
.

Also, let C̃k =
{
Qjα ∈ Qj : d(z, zjα) ≤ kC1δ

j
}

.

It is easy to see that Qj = ∪k≥1Ck. We compute a bound for card Ck
(where cardS denotes the cardinality of a set S). First, we have the following
proposition describing the distance of points in ∪Ck to z.

Proposition 3.3. Let Qjα ∈ Ck. Then,

(i) 0 ≤ d(z, x) ≤ (k + 1)C1δ
j for all x ∈ Qjα when k ≤ 2, and

(ii) 1
3kC1δ

j ≤ d(z, x) ≤ (k + 1)C1δ
j for all x ∈ Qjα when k ≥ 3.
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Proof. Fix Qjα ∈ Ck and fix x ∈ Qjα. Then,

d(x, z) ≤ d(x, zjα) + d(zjα, z) ≤ diamQjα + kC1δ
j ≤ (k + 1)C1δ

j .

Also,

(k − 1)C1δ
j ≤ d(z, zjα) ≤ d(x, z) + d(x, zjα) ≤ d(x, z) + C1δ

j .

Combining these two estimates we have

(k − 2)C1δ
j ≤ d(z, x) ≤ (k + 1)C1δ

j .

This gives us (i). To obtain (ii), note that whenever k ≥ 3 we have 1
3k ≤

k − 2. �

Next, we compare two balls which are separated by an arbitrary distance.
In the following proposition (and indeed the rest of the paper), let us fix
p = log2(CD), where CD is the doubling constant.

Proposition 3.4. Fix balls B(x, r), B(y, r) ⊂ X . Then, for all ε > 0,

2−p
(
d(x, y) + r + ε

r

)−p
µ(B(y, r)) ≤ µ(B(x, r))

≤ 2p
(
d(x, y) + r + ε

r

)p
µ(B(y, r)).

Proof. Fix ε > 0 and note that

B(x, r), B(y, r) ⊂ B(x, d(x, y) + r + ε), B(y, d(x, y) + r + ε).

Therefore,

µ(B(y, r)) ≤ µ
(
B

(
x,
d(x, y) + r + ε

r
r

))
≤ 2p

(
d(x, y) + r + ε

r

)p
µ(B(x, r)).

Similarly, we have

µ(B(x, r)) ≤ µ
(
B

(
y,
d(x, y) + r + ε

r
r

))
≤ 2p

(
d(x, y) + r + ε

r

)p
µ(B(y, r))

which establishes the claim. �

We make a parenthetical remark that our assumption 0 < µ(B(x, r)) <∞
for all x ∈ X and r > 0 is not strong since by the previous proposition,
coupled with the doubling property, allow us to recover this assumption if
we only required 0 < µ(B(x0, r0)) <∞ to hold for some x0 ∈ X and r0 > 0.

We now return back to the problem of estimating card Ck. The reader
will observe that we have been generous in our calculations.

Proposition 3.5. We have card C̃k ≤ Ck2p where

C = 4p
(
C1 + 2a0

a0

)p(2C1

a0

)p
.

In particular, card Ck ≤ Ck2p.
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Proof. Fix k ≥ 1. Set ε = r = a0δ
j and then

d(z, zjα) + r + ε ≤ kC1δ
j + 2a0δ

j ≤ (C1 + 2a0)δjk

when Qjα ∈ C̃k. By Proposition 3.4,

2−p
(
C1 + 2a0

a0

)−p
k−pµ(B(z, a0δ

j)) ≤ µ(B(zkα, a0δ
j)).

Now, note that by Proposition 3.3, we have sup
x∈Qjα d(x, z) ≤ (k+1)C1δ

j

and so ∪C̃k ⊂ B(z, (k + 1)C1δ
j). Then,

µ(B(z, (k + 1)C1δ
j)) ≤ 2p

(
(k + 1)C1

a0

)p
µ(B(z, a0δ

j))

≤ 2p
(

2C1

a0

)p
kpµ(B(z, a0δ

j)).

Since µ(B(z, a0δ
j)) < ∞ and by combining the two estimates, and the

fact that B(zkα, a0δ
j) ⊂ Qjα for each Qjα ∈ C̃k, we compute

card Ck ≤ 2p
(

2C1

a0

)p
kp 2p

(
C1 + 2a0

a0

)p
kp

= 4p
(
C1 + 2a0

a0

)p(2C1

a0

)p
k2p.

The observation that Ck ⊂ C̃k completes the proof. �

We have the following important consequences. They are useful in many
of the calculations in §5. Following the notation in [5], we write 〈x〉 = 1+|x|.

Corollary 3.6. Fix δj+1 < t ≤ δj and a cube Q ∈ Qj. Then,∑
R∈Qj

〈
dist(R,Q)

t

〉−M
≤ C

(
1 + 4p +

(
3

C1

)M ∞∑
k=3

k2p−M

)
with C being the constant in the previous proposition.

Proof. First, we note that

1 ≤ 1 +
dist(R,Q)

t
and

dist(R,Q)

δj
≤ 1 +

dist(R,Q)

t
.

Then,∑
R∈Qj

〈
dist(R,Q)

t

〉−M
≤ card C1 + card C2 +

∞∑
k=3

∑
R∈Ck

(
δj

d(R,Q)

)M

≤ C + C22p +

∞∑
k=3

card Ck

(
δj

1
3kC1δj

)M

≤ C

(
1 + 4p +

(
3

C1

)M ∞∑
k=3

k2p−M

)
.

�
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Corollary 3.7. For each M > 2p+ 1, there exists a constant AM > 0 such
that

sup
Q

∑
R∈Qj

〈
dist(R,Q)

t

〉−M
≤ AM .

4. Maximal functions and Carleson Measures

A full treatment of the classical theory of maximal functions and Car-
leson measures can be found in §4 of [16] by Stein. The objects of interest
that we define in this section are taken from this book mutatis mutandis.
Furthermore, we refer the reader to [9] by Heinonen and [8] by Coifman and
Weiss as two excellent expositions that touch on some of the issues and ideas
presented here.

For a measurable subset S with 0 < µ(S) < ∞ and f ∈ L1
loc(X ,CN ), we

define the average of f on S by
ffl
S f = µ(S)−1

´
S f . Then, we make the

following definition.

Definition 4.1 (Maximal function). Let f ∈ L1
loc(X ,CN ). Define the un-

centred maximal function of f by:

Mf(x) = sup
B3x

 
B
|f | dµ

where the supremum is taken over all balls B containing x.

We want to deduce that this M exhibits a weak type (1, 1) estimate and
is bounded in Lp(X ,CN ) for p > 1. The proof of the following theorem is
standard via the Vitali type covering Theorem 1.2 in [8].

Theorem 4.2 (Maximal theorem). There exists a constant C1 > 0 such
that whenever f ∈ L1(X ,CN ), we have

µ({x ∈ X :Mf(x) > α}) ≤ C1

α

ˆ
X
|f | dµ.

Whenever f ∈ Lq(X ,CN ) with q > 1,

‖Mf‖q ≤ Cq ‖f‖q
where Cq > 0 is a constant.

In order to set up a theory of Carleson measures, we require an upper half
space. We define this to be X+ = X × R+ where R+ = (0,∞). The cone
over a point x ∈ X is then defined as Γ(x) = {(y, t) ∈ X+ : d(x, y) < t} and
this leads to the following.

Definition 4.3 (Nontangential maximal function). Let f ∈ L1
loc(X+,CN ).

Define

M∗f(x) = sup
(y,t)∈Γ(x)

|f(y, t)| .

Like its classical counterpart, this maximal function is measurable. This
is the content of the following proposition.

Proposition 4.4. The set {x ∈ X :M∗f(x) > α} is open and hence M∗f
is measurable.
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Proof. Fix x ∈ X withM∗f(x) > α. Then, there exists a (y, t) ∈ Γ(x) such
that |f(y, t)| > α. Consider the ball B(y, t) and take any z ∈ B(y, t). Note
that since d(z, y) < t we have (y, t) ∈ Γ(z) and so M∗f(z) > α. Therefore,
x ∈ B(y, t) ⊂ {x ∈ X :M∗f(x) > α}. �

Therefore, we define the following function space in an analogous way to
the classical theory.

Definition 4.5 (Nontangential function space). Let N denote the space of
Borel measurable functions f : X+ → C such that M∗f ∈ L1(X ). We equip
this space with the norm ‖f‖N = ‖M∗f‖1.

Now, let B = B(x, r) and define the tent over B as

T(B) = {(y, t) ∈ X+ : d(x, y) ≤ r − t} .

For an arbitrary open set O ⊂ X , we define the tent over O by T(O) =
X+ \ ∪x∈X\OΓ(x). The following is an equivalent characterisation of T(O).

Proposition 4.6. Whenever (x, t) ∈ T(O) we have that

(x, t) ∈ T(B(x, d(x,X \O)))

and in particular, T(O) = ∪x∈OT(B(x, d(x,X \O))).

Proof. First, note that by de Morgen’s law, we can conclude that T(O) =
∩y∈X\OX+ \Γ(y). Fix (x, t) ∈ T(O). So, (x, t) ∈ X+ \Γ(y) for all y ∈ X \O.
That is, for all y 6∈ O, we have (x, t) 6∈ Γ(y) which implies d(x, y) ≥ t.
Therefore, d(x,X \O) ≥ t. Then, by the definition of T(B(x, r)) and setting
r = d(x,X \ O), we conclude (x, t) ∈ T(B(x, d(x,X \ O))). The converse
inclusion is easy since B(x, d(x,X \O)) ⊂ O. �

Definition 4.7 (Carleson function). Let ν be any Borel measure on X+.
Define

C(ν)(x) = sup
B3x

ν(T(B))

µ(B)
.

Definition 4.8 (Space of Carleson measures). We define C to be the space
of measures ν that are Borel on X+ and such that C(ν) is bounded. Such a
measure is called a Carleson measure and we define

‖ν‖C = sup
x∈X

C(ν)(x)

to be the Carleson norm.

Since we have a dyadic structure, we define the Carleson box over Q ∈ Q
by RQ = Q× (0, `(Q)]. Unlike the classical definition, we are forced to take

Q since Q is only guaranteed to cover X almost everywhere. The importance
of this subtlety will become apparent in the proof of the following proposition
that provides an alternative characterisation of a Carleson measure.

Proposition 4.9. Let ν be a Borel measure on X+. Then the statement

sup
B

ν(T(B))

µ(B)
<∞ for every ball B
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is equivalent to the statement

sup
Q

ν(RQ)

µ(Q)
<∞ for every Q ∈ Q.

Proof. First, fix Q ∈ Qj and let xQ be its centre. Then, we have that
Q ⊂ B(xQ , C1δ

j). Then, certainly, RQ ⊂ T(B(xQ , (C1 + 2)δj)). So,

ν(RQ) ≤ ν(T(B(xQ , (C1 + 2)δj))) ≤ ‖ν‖C µ(B(xQ , (C1 + 2)δj)

≤ 2p
(
C1 + 2

a0

)p
‖ν‖C µ(B(xQ , a0δ

j)) ≤ 2p
(
C1 + 2

a0

)p
‖ν‖C µ(Q).

The converse is harder. Fix B = B(x, r) and let j ∈ Z such that δj+1 <
r ≤ δj . Let N(B) =

{
Q ∈ Qj : Q ∩B 6= ∅

}
. It is an easy fact that N(B) 6=

∅.

(i) First, we claim that B ⊂ ∪Q∈N(B)Q. Suppose y ∈ B but y 6∈ ∪N(B).

That is, y 6∈ Q for all Q ∈ Qj . Thus, there exists a Q ∈ Qj such that
y ∈ ∂Q. That is, for every ε > 0, B(y, ε) ∩ Q 6= ∅. But there exists
an ε > 0 such that B(y, ε) ⊂ B, and so Q ∩ B 6= ∅. This means that
Q ∈ N(B) and establishes the claim.

(ii) Fix Q ∈ N(B) as a reference cube and let Q′ ∈ N(B) be any other
cube. Since r < δj , we note that d(x, xQ), d(x, xQ′) ≤ δj + C1δ

j .

Therefore, d(xQ , xQ′) ≤ 2(C1 + 1)δj . That is, all the centres of cubes

Q′ ∈ N(B) are inside the ball B(xQ , 2(C1 + 1)δj) and hence C̃2(C1+1).
Thus, by Proposition 3.5,

cardN(B) ≤ card C̃2(C1+1) ≤ C2p(C1 + 1)2p.

(iii) Now, suppose that (y, t) ∈ T(B). That is, y ∈ B and We have d(y, t) ≤
r − t ≤ δj . By (i), there exists a cube Q ∈ N(B) such that y ∈ Q.
Therefore, (y, t) ∈ RQ = Q and shows that T(B) ⊂ ∪Q∈N(B)RQ .

(iv) Fix Q ∈ N(B) and so d(x, xQ) ≤ (C1 + 1)δj . Set ε = r = δj+1 in
Proposition 3.4 so that

µ(B(xQ , δ
j+1)) ≤ 2p

(
(C1 + 1)δj + 2δj+1

δj+1

)
µ(B(x, δj+1))

≤ 2p((C1 + 1)δ−1 + 2)pµ(B(x, r)).

Now, by combining (i) - (iv),

ν(T(B)) ≤
∑

Q∈N(B)

ν(RQ) .
∑

Q∈N(B)

µ(B(xQ , C1δ
j))

.
∑

Q∈N(B)

µ(B(xQ , δ
j+1)) . cardN(B)µ(B(x, r)) . µ(B(x, r))

which completes the proof. �

We quote the following covering theorem of Whitney given as Theorem
1.3 in [8].

Theorem 4.10 (Whitney Covering Theorem). Let O $ X be open. Then,
there exists a set of balls E = {Bj}j∈N and a constant c1 <∞ independent

of O such that
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(i) The balls in E are mutually disjoint,
(ii) O =

⋃
j∈N c1Bj,

(iii) 4c1Bj 6⊂ O.

This allows us to prove the following theorem of Carleson.

Theorem 4.11 (Carleson’s Theorem). Let f ∈ N and ν ∈ C. Then,
¨
X+

|f(x, t)| dν(x, t) . ‖f‖N ‖ν‖C

where the constant depends only on p and the Whitney constant c1.

Proof. (i) We prove {(x, t) ∈ X+ : |f(x, t)| > α} ⊂ T(Eα) where Eα =
{x ∈ X :M∗f(x) > α}. Fix (x, t) ∈ X+ such that |f(x, t)| > α. Then,
whenever y ∈ B(x, t), we also have x ∈ B(y, t) and

M∗f(y) = sup
t>0

sup
z∈B(y,t)

|f(z, t)| > |f(x, t)| > α.

Therefore, B(x, t) ⊂ Eα and (x, t) ∈ T(B(x, t)) ⊂ T(Eα).
(ii) Let O $ X be an open set, and let E = {Bj}j∈N be the Whitney

covering guaranteed by Theorem 4.10. We prove that

T(O) ⊂ ∪jT(9c1Bj).

Fix x ∈ O and let (x, t) ∈ T (B(x, d(x,X \O))). Then, there exists a
ball Bj = Bj(xj , rj) ∈ E such that x ∈ c1Bj . Let y ∈ B(x, d(x,X \O)).
Since 4c1Bj ∩ X \ O, for any z ∈ X \ O d(y,X \ O) ≤ d(x, z) ≤ 8c1rj
Then,

d(y, xj) ≤ d(y, x) + d(x, xk) ≤ d(x,X \O) + d(x, xk) < 8c1rj + c1rj = 9c1rj .

This proves that B(x, d(x,X \ O)) ⊂ 9c1Bj and so T(B(x, d(x,X \
O))) ⊂ T(9c1Bj). We apply Proposition 4.6 to conclude that T(O) ⊂
∪jT(9c1Bj).

(iii) Now, we prove that there exists a constant C > 0 such that for all
open sets O ⊂ X ,

ν(T(O)) ≤ C ‖ν‖C µ(O).

First assume that O = X . If µ(X ) = ∞, then there is nothing
to prove. So suppose otherwise. Now, for any x ∈ X and any ball
Br = B(x, r),

1

µ(Br)
ν(T(Br)) ≤ C(ν)(x) ≤ ‖ν‖C

and therefore, ν(T(Br)) ≤ ‖ν‖C µ(X ) for every ball Br of radius r.
Now, χT(Bn) ≤ 1 for each n ∈ N and χ

T(Bn) → χ
T(X ) and n → ∞

pointwise. Then, by application of Dominated Convergence Theorem,

ν(T(X )) =

ˆ
X+

lim
n→∞

χ
T(Bn) dν = lim

n→∞

ˆ
X+

χ
T(Bn) dν ≤ ‖ν‖C µ(X ).
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Now, consider the case when O $ X . Then, by (ii) and the subad-
ditivity of the measure,

ν(T(O)) ≤
∑
j

ν(T(9c1Bj)) ≤ ‖ν‖C
∑
j

µ(9c1Bj)

≤ 2p(9c1)p ‖ν‖C
∑
j

µ(Bj) ≤ (18c1)p ‖ν‖C µ(O).

(iv) By (i) and (iii),

ν {(x, t) ∈ X+ : |f(x, t)| > α} . ‖ν‖C µ {x ∈ X :M∗f(x) > α}
and integrating both sides with respect to α completes the proof.

�

5. Harmonic Analysis of ΠB

Let Qt = Qj for δj+1 < t ≤ δj . Following the structure of the proof in
[5], for t ∈ R+, we define the dyadic averaging operator At : H →H as

At(x) =
∑
Q∈Qt

χQ(x)

 
Q
u dµ

when x ∈ ∪Qt and 0 elsewhere. A straightforward calculation shows that
At ∈ L(H ) and ‖At‖ ≤ 1 uniformly in t. Then, the principal part is defined
as γt(x)w = (ΘB

t ω)(x) for w ∈ CN and where ω(x) = w for all x ∈ X .
Following [5], to prove Theorem 2.4 as a consequence of Proposition 2.1,

we need to show that ˆ ∞
0

∥∥ΘB
t Ptu

∥∥2 dt

t
. ‖u‖2

for u ∈ R(Π). Thus, we follow the paradigm in [5], [4] and [15] and decom-
pose this problem in the following way:ˆ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
≤
ˆ ∞

0

∥∥ΘB
t Ptu− γtAtu

∥∥2 dt

t

+

ˆ ∞
0
‖γtAt(Pt − I)u‖2 dt

t
+

¨
X+

|Atu(x)|2 |γt(x)|2 dµ(x)dt

t
.

The purpose of the first two terms is to reduce the estimate down to the
third term which can be dealt with a Carleson measure estimate.

5.1. Off-Diagonal Estimates. The following lemma is a primary tool in
our argument. Certainly, it was known to the authors of [5] since they use
a similar result in the proof of their Proposition 5.2. The key difference is
that we use Lip ξ instead of ‖∇ξ‖∞ to control the “slope” of our cutoff.
Furthermore, this lemma is used later in our work to construct Lipschitz
substitutions where [5], [4] and [15] use smooth cutoff functions. We include
a detailed proof of this lemma since it is central to our work.

Lemma 5.1 (Lipschitz separation lemma). Let (X, d) be a metric space
and suppose E,F ⊂ X satisfy d(E,F ) > 0. Then, there exists a Lipschitz

function η : X → [0, 1], and a set Ẽ ⊃ E with d(Ẽ, F ) > 0 such that

η|E = 1, η|X\Ẽ = 0 and Lip η ≤ 4/d(E,F ).
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Proof. Define Ẽ = {x ∈ X : d(x,E) < 1/4d(E,F )}. By construction, E ⊂
Ẽ and from the triangle inequality for d and taking infima,

d(Ẽ, F ) + sup
x∈Ẽ

d(x,E) ≥ d(E,F ),

and since supx∈Ẽ d(x,E) ≤ 1

4
d(E,F ), it follows that d(Ẽ, F ) ≥ 3

4
d(E,F ) >

0.
Now, define:

η(x) =

{
1− 4d(x,E)

d(E,F ) x ∈ Ẽ
0 x 6∈ Ẽ

.

We consider the three possible cases.

(i) First, suppose that x, y 6∈ Ẽ. Then,

|η(x)− η(y)| = 0 ≤ 4d(x, y)

d(E,F )
.

(ii) Now, suppose that x, y ∈ Ẽ. By the triangle inequality, we have
d(x, z) ≤ d(x, y)+d(y, z) and by taking an infima over z ∈ E and invok-
ing the symmetry of distance, |d(x,E)− d(y,E)| ≤ d(x, y). Therefore,

|η(x)− η(y)| =
∣∣∣∣1− 4d(x,E)

d(E,F )
− 1 +

4d(y,E)

d(E,F )

∣∣∣∣
=

4

d(E,F )
|d(x,E)− d(y,E)| ≤ 4

d(E,F )
d(x, y).

(iii) Lastly, suppose that x ∈ Ẽ and y 6∈ Ẽ. Then η(y) = 0 and since
d(x,E) ≤ 1

4d(E,F ),

|η(x)− η(y)| = |η(x)| = η(x) = 1− 4d(x,E)

d(E,F )
=
d(E,F )− 4d(x,E)

d(E,F )
.

But we also have the triangle inequality d(E, x) + d(x, y) ≥ d(y,E)
and by the choice of y we have that d(y,E) ≥ 1/4d(E,F ). Therefore,
d(x, y) ≥ d(y,E)− d(x,E) ≥ 1

4d(E,F )− d(x,E) which implies that

4d(x, y)

d(E,F )
≥ d(E,F )− d(x,E)

d(E,F )
= |η(x)− η(y)| .

�

A preliminary and immediate consequence is the following off-diagonal
estimates resembling those in §5.1 in [5].

Proposition 5.2 (Off-diagonal estimates). Let Ut be either RBt for t ∈ R
or PBt , Q

B
t ,Θ

B
t for t > 0. Then, for each M ∈ N, there exists a constant

CM > 0 (that depends only on M and the constants in (H1)-(H6)) such that

‖Utu‖L2(E) ≤ CM
〈

dist(E,F )

t

〉−M
‖u‖H

whenever E,F ⊂ X are Borel sets and u ∈H with spt u ⊂ F .

We omit the proof since it is essentially the same as that of Proposition
5.2 in [5]. The following is an immediate consequence.



14 LASHI BANDARA

Corollary 5.3. Let Q ∈ Qt and 0 < s ≤ t with Us as specified in the
proposition. Then,

‖Usu‖L2(Q) ≤ CM
∑
R∈Qt

〈
dist(R,Q)

s

〉−M
‖u‖L2(R)

whenever u ∈H .

In our setting, it is more convenient to deal with the following function
space rather than L2

loc as used in [5].

Definition 5.4. We define L2
Qt

(X ,CN ) to be the space of measurable func-

tions f : X → CN such that on each Q ∈ Qt,ˆ
Q
|f |2 dµ <∞.

We equip this space with the seminorms ‖· ‖L2(Q) indexed by Qt.

We have the following observations analogous to those on page 478 in
[5]. It follows from Propositions 3.3, 3.4, 3.5 coupled with the off-diagonal

estimates and by choosing M > 5p
2 + 1. We remind the reader that p =

log2(CD) where CD is the doubling constant.

Corollary 5.5. There exists a C ′ > 0 such that for all t > 0, Ut extends
to a continuous map Ut : L∞(X ,CN )→ L2

Qt
(X ,CN ) with

‖Utu‖L2(Q) ≤ C
′µ(Q)

1
2 ‖u‖L∞ .

Corollary 5.6. We have γt ∈ L2
Qt

(X ,L(CN )) and for all Q ∈ Qt satisfy 
Q
|γt(x)|2L(CN ) dµ(x) ≤ C ′2

In particular, ‖γtAt‖L(H ) ≤ C ′ uniformly for all t > 0. The constant C ′ is

the same as that of the previous corollary.

5.2. Weighted Poincaré inequality and bounding the first term.
Controlling the first term in [5] relies primarily on the weighted Poincaré in-
equality as given in Lemma 5.4 in [5]. We pursue a similar strategy and
begin by noting the following simple consequence of (H8).

Lemma 5.7 (Dyadic Poincaré). Whenever Q ∈ Qt and r ≥ C1δ
−1 we haveˆ

B(xQ ,rt)
|u(x)− uQ |2 dµ(x) . rp+2

ˆ
B(xQ ,crt)

|tΠu(x)|2 dµ(x)

for all u ∈ R(Π) ∩ D(Π).

This yields the following proposition analogous to Lemma 5.4 in [5].

Proposition 5.8 (Weighted Poincaré). Whenever Q ∈ Qt and M > p+ 1,
we haveˆ
X
|u(x)− uQ |2

〈
d(x,Q)

t

〉−M
dµ(x) .

ˆ
X
|tΠu(x)|2

〈
d(x,Q)

t

〉p−M
dµ(x)

for all u ∈ R(Π) ∩ D(Π), where the constant depends on M .
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Proof. Observe that for M > 1, we have〈
d(x,Q)

t

〉−M
≤ 2C1

δ

〈
d(x, xQ)

t

〉−M
.

By evaluating the integralˆ
X

ˆ ∞
θ(x)
|u(x)− uQ | dν(r) dµ(x),

where dν(r) = Mr−M−1 dr, and invoking Lemma 5.7 along with Fubini’s
Theorem establishes the claim. �

This leads to the following proposition which bounds the first term.

Proposition 5.9 (First term inequality). Whenever u ∈ R(Π), we haveˆ ∞
0

∥∥ΘB
t Ptu− γtAtPtu

∥∥2
. ‖u‖2 .

We omit the proof since it is very similar to the proof of Proposition 5.5
in [5]. It is a simple matter of verification using Corollary 3.7 and invoking
the weighted Poincaré inequality.

5.3. Bounding the second term. The bounding of the second term relies
on a suitable substitution for Lemma 5.6 in [5]. The crux of the argument
is to be able to perform a cutoff “close” to the boundary of the dyadic cube
in question. First, we define the following sets.

Definition 5.10 (Eτ , Ẽτ ). Let Q ∈ Qt and τ ≤ t Define

Eτ =
{
x ∈ Q : d(x,X \Q) >

a0τ

2

}
, Ẽτ =

{
x ∈ Q : d(x,X \Q) ≤ a0τ

2

}
.

The following proposition renders a suitable Lipschitz substitution to the
smooth cutoff used in Lemma 5.6 in [5] and Lemma 5.7 in [15].

Proposition 5.11. There exists a Lipschitz function ξ : Q → [0, 1] such

that ξ = 1 on Eτ , spt (Lip ξ) ⊂ Ẽτ , and

Lip ξ ≤ 16

a0τ
.

Proof. Set

F =
{
x ∈ Q : d(x,X \Q) ≤ a0τ

4

}
and note that F ⊂ Ẽτ . Then,

a0τ

2
≤ dist(X \Q, Eτ ) ≤ dist(Eτ , F ) + dist(X \Q,F ) ≤ dist(Eτ , F ) +

a0τ

4

and so dist(Eτ , F ) > a0τ
4 . By application of Lemma 5.1, we find ξ = 1 on

Eτ , ξ = 0 on Q \ F and

Lip ξ ≤ 4
a0τ
4

=
16

a0τ
.
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Now, fix x ∈ Eτ . It is a simple matter to verify that Eτ is open and
nonempty. So there exists an ε0 > 0 such that B(x, ε0) ⊂ Eτ . Therefore,

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

= lim
ε→0

sup

{
|ξ(x)− ξ(y)|
d(x, y)

: y ∈ Eτ ∩B(x, ε) \ {a}
}

= 0.

Thus, spt ξ ⊂ Ẽτ . �

This enables us to prove the following lemma. It is of key importance
in bounding the second term, as well as in the Carleson measure estimate
which allows us to bound the last term.

Lemma 5.12. Let Υ be Γ,Γ∗ or Π. Then, whenever Q ∈ Qt,∣∣∣∣ 
Q

Υu dµ

∣∣∣∣2 . 1

tη

( 
Q
|u|2 dµ

) η
2
( 

Q
|Υu|2 dµ

)1− η
2

where the constant depends only on C1, C2, a0, η and p.

Proof. Let τ =
(ffl

Q |u|
2 dµ

) 1
2
(ffl

Q |Υu|
2 dµ

)− 1
2
. The case of t ≤ τ is easy.

So, suppose that τ ≤ t ≤ δj and let ξ be the Lipschitz function guaranteed
in Proposition 5.11 extended to 0 outside of Q. and so write∣∣∣∣ˆ

Q
Υu dµ

∣∣∣∣ ≤ ∣∣∣∣ˆ
Q

(1− ξ)Υu dµ
∣∣∣∣+

∣∣∣∣ˆ
Q

[ξ,Υ]u dµ

∣∣∣∣+

∣∣∣∣ˆ
Q

Υ(ξu) dµ

∣∣∣∣ .
The last term is 0 by (H7) and so we are left with estimating the two

remaining terms. First, noting that spt (1− ξ) ⊂ Ẽτ we compute∣∣∣∣ˆ
Q

(1− ξ)Υu dµ
∣∣∣∣ ≤ ∣∣∣∣ˆ

Ẽτ
(1− ξ)Υu dµ

∣∣∣∣ ≤ (ˆ
Ẽτ
|Υu|2 dµ

) 1
2

µ(Ẽτ )

≤ C
1
2
2

(a0τ

2δj

) η
2
µ(Q)

1
2

(ˆ
Q
|Υu|2 dµ

) 1
2

≤ C
1
2
2

(a0τ

2t

) η
2
µ(Q)

1
2

(ˆ
Q
|Υu|2 dµ

) 1
2

.

Now, for the second term. We note that spt Mξ ⊂ spt Lip ξ ⊂ Ẽτ and
compute∣∣∣∣ˆ

Q
[ξ,Υ]u

∣∣∣∣ =

∣∣∣∣ˆ
Ẽτ
Mξ(x)u(x) dµ(x)

∣∣∣∣ ≤ (ˆ
Ẽτ
|Mξ|2 dµ

) 1
2
(ˆ
Ẽτ
|u|2 dµ

) 1
2

≤ Lip ξ µ(Ẽτ )
1
2

(ˆ
Q
|u|2
) 1

2

≤ 16

a0
C

1
2
2

(a0τ

2t

) η
2 1

τ
µ(Q)

1
2

(ˆ
Q
|u|2
) 1

2

≤ 16

a0
C

1
2
2

(a0τ

2t

) η
2
µ(Q)

1
2

(ˆ
Q
|Υu|2

) 1
2
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where we have used Cauchy-Schwarz inequality to obtain the first inequality,
(H6) in the second, the condition (vi) of Theorem 3.1 in the third, and
substitution for 1

τ in the last. Combining these estimates, we have∣∣∣∣ˆ
Q

Υu dµ

∣∣∣∣ ≤ D 1

t
η
2

τ
η
2µ(Q)

1
2

(ˆ
Q
|Υu|2 dµ

) 1
2

where

D = C
1
2
2

(a0

2

) η
2

+
16

a0
C

1
2
2

(a0

2

) η
2

and D̃ = C(2pCp1a
−p
0 )

1
2 .

By Cauchy-Schwartz and multiplying both sides by µ(Q)−2, we find∣∣∣∣ 
Q

Υu dµ

∣∣∣∣2 ≤ 2D2 1

tη
τη

 
Q
|Υu|2 dµ.

The proof is complete by making a substitution for τη. �

Proposition 5.13 (Second term estimate). For all u ∈H , we haveˆ ∞
0
‖γtAt(Pt − I)u‖ dt

t
. ‖u‖2 .

Again, the proof of this proposition is omitted since it resembles the proof
of Proposition 5.7 in [5] with minor differences.

5.4. Carleson measure estimate. We begin this section with the follow-
ing proposition which illustrates that the final term can be dealt with a
Carleson measure estimate.

Proposition 5.14. For all u ∈H , we have¨
X+

|Atu(x)|2 dν(x, t) . ‖ν‖C ‖u‖
2

for every ν ∈ C.

Proof. First, we show that for almost every x ∈ X ,

M∗ |A·u|2 (x) .Mu(x)2

where the constant depends only on p, C1, δ and a0. Let f ∈ L1
loc(X+,CN ).

Then, we note that

M∗f(x) = sup
t>0

sup
y∈B(x,t)

|f(y, t)| .

Fix t such that δj+1 < t ≤ δj and fix x ∈ ∪Qt. Since Atu(z) = 0 when
z 6∈ ∪Qt, take y ∈ ∪Qt such that d(x, y) < t. Let Q ∈ Qt be the unique
cube with y ∈ Q and let yQ ∈ Q such that B(yQ, a0δ

j) ⊂ Q ⊂ B(yQ, C1δ
j).

Then, d(yQ, x) ≤ d(yQ, y) + d(y, x) ≤ Ct, where C = (C1δ
−1 + 1).

Also

µ(B(yQ, Ct)) ≤ µ(B(yQ, Cδ
j)) ≤ 2pCpa−p0 µ(B(yQ, a0δ

j)) ≤ 2pCpa−p0 µ(Q)

and therefore,

|Atu(y)| ≤
 
Q
|u| dµ ≤ 2pCpa−p0

 
B(yQ,Ct)

|u| dµ.
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Moreover,

|Atu(y)|2 ≤ C ′
( 

B(yQ,Ct)
|u| dµ

)2

where C ′ = 22pC2pa−2p
0 .

Now, since we have established that x ∈ B(yQ, Ct),

sup
y∈B(x,t)

|Atu(y)|2 ≤ C ′ sup
y∈B(x,t)

( 
B(yQ(y),Ct)

|u| dµ

)2

≤ C ′(Mu(x))2.

Let X̃ = ∩j ∪Qj and so µ(X \X̃ ) = µ(∪jX \∪Qj) ≤
∑

j µ(X \∪Qj) = 0.

Therefore, x ∈ X̃ , then x ∈ ∪Qt for all t > 0. So, fix x ∈ X̃ . Then,

M∗ |A·u|2 (x) = sup
t>0

sup
y∈B(x,t)

|Atu(y)|2 ≤ C ′Mu(x)2

which completes the proof.
Next, let f(x, t) = |Atu(x)|2. Then, ‖f‖N = ‖M∗f‖1 . ‖Mu‖2 <∞ by

the Maximal Theorem 4.2. Invoking Carleson’s Theorem 4.11 completes the
proof. �

Thus, to bound the final term, it suffices to prove

A 7→
¨
A
|γt(x)|2 dµ(x)

dt

t

is a Carleson measure. We follow [5] and fix δ > 0 to be chosen later. Let

Kν =

{
ν ′ ∈ L(CN ) \ {0} :

∣∣∣∣ ν ′|ν ′| − ν
∣∣∣∣ ≤ σ}

and let F be a finite set of ν ∈ L(CN ) with |ν| = 1 such that ∪ν∈FKν =
L(CN ) \ {0}. We note as do the authors of [5] that it is enough to show¨

(x,t)∈RQ ,γt∈Kν
|γt(x)|2 dµ(x)

dt

t
. µ(Q)

for each ν ∈ F . A stopping time argument allows us to reduce this to the
following.

Proposition 5.15. There exists a 0 < β < 1 such that for every dyadic
cube Q ∈ Q and ν ∈ L(CN ) with |ν| = 1, there exists a collection {Qk} ⊂ Q
of disjoint subcubes of Q satisfying µ(EQ,ν) > βµ(Q) and such that¨

(x,t)∈E∗Q,ν , γt(x)∈Kν
|γt(x)|2 dµ(x)

dt

t
. µ(Q)

where EQ,ν = Q \ ∪kQk and E∗Q,ν = RQ \ ∪kRQk.

We prove this via defining a test function similar to the one found on
page 484 in [5]. Here, the authors use a smooth cutoff function in their
construction. Again, we rephrase this in terms of a Lipschitz cutoff function
whose existence is guaranteed by the following lemma.
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Lemma 5.16. Let Q ∈ Q. Then, there exists a Lipschitz function η : X →
[0, 1] such that η = 1 on B(xQ , τC1 `(Q)) and η = 0 on X \B(xQ , 2τC1 `(Q))
with

Lip η ≤ 4

τC1

1

`(Q)

whenever τ > 1.

Proof. Fix Q ∈ Qj , and we have Q ⊂ B(xQ , τC1δ
j) ⊂ B(xQ , 2τC1δ

j). Also,

d(B(xQ , τC1δ
j),X \B(xQ , 2τC1δ

j)) ≥ (2τC1 − τC1)δj = τC1δ
j .

Now, we invoke Lemma 5.1 with E = B(xQ , τC1δ
j) and F = X \

B(xQ , 2τC1δ
j) to find a Lipschitz η : X → [0, 1] with η = 1 on B(xQ , τC1δ

j),
η = 0 on X \B(xQ , τC1δ

j) and

Lip η ≤ 4

d(B(xQ , τC1δj),X \B(xQ , 2τC1δj))
≤ 4

τC1

1

δj
=

4

τC1

1

`(Q)

which completes the proof. �

The test function is now defined as follows. Let Q ∈ Q and fix ν ∈ L(CN )
with |ν| = 1. Let ηQ be the Lipschitz map guaranteed by Lemma 5.16 and

let w, ŵ ∈ CN such that ν∗(ŵ) = w with |w| = |ŵ| = 1. Furthermore, let
wQ = ηQw and define

fwQ,ε = wQ − ε `(Q)ıΓ(I + ε `(Q)ıΠB)−1wQ

= (1 + ε `(Q)ıΓ∗B)(1 + ε `(Q)ıΠB)−1wQ .

It is then an easy fact that ‖wQ‖2 ≤ (4τC1a
−1
0 )pµ(Q) and we obtain the

following lemma analogous to Lemma 5.10 in [5].

Lemma 5.17. There exists c > 0 such that for all ε > 0,
∥∥∥fwQ,ε∥∥∥ ≤ cµ(Q)

1
2 ,

˜
RQ

∣∣∣ΘB
t f

w
Q,ε

∣∣∣2 dµ(x)
dt

t
≤ c 1

ε2
µ(Q), and

∣∣∣fflQ fwQ,ε − w∣∣∣ ≤ cε η2 .

Proof. The proof of the first two estimates are essentially the same as that
of Lemma 5.10 in [5]. To prove the last estimate, note that since ηQ = 1 on
Q, we have on Q that

fwQ,ε − w = wQ − ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ − w
= (ηQ − 1)w − ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ

= −ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ .
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Setting u = (1 + ε `(Q)ıΠB)−1wQ and Υ = Γ, we apply Lemma 5.12∣∣∣∣ 
Q
fwQ,ε − w

∣∣∣∣ =

∣∣∣∣ 
Q
ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ

∣∣∣∣
= ε `(Q)

∣∣∣∣ Qı(1 + ε `(Q)ıΠB)−1wQ

∣∣∣∣
.
ε `(Q)

t
η
2

( 
Q

∣∣(1 + ε `(Q)ıΠB)−1wQ
∣∣ dµ) η

4

( 
Q

∣∣Γ(1 + ε `(Q)ıΠB)−1wQ
∣∣2 dµ

) 1
2
− η

4

=

(
ε `(Q)

t

) η
2
( 

Q

∣∣(1 + ε `(Q)ıΠB)−1wQ
∣∣ dµ) η

4

( 
Q

∣∣ε `(Q)ıΓ(1 + ε `(Q)ıΠB)−1wQ
∣∣2 dµ

) 1
2
− η

4

.

The proof is completed by noting t ' `(Q) and invoking Proposition 2.5 and
Lemma 4.2 of [5]. �

The proof of Proposition 5.15 then follows a procedure similar to that
which is used to prove Lemma 5.12 in [5].

We note that our hypotheses (H1)-(H8) remain unchanged upon replac-
ing (Γ, B1, B2) by (Γ∗, B2, B1), (Γ∗, B2

∗, B1
∗) and (Γ, B1

∗, B2
∗). Thus, the

hypothesis of Proposition 2.1 is satisfied and Theorem 2.4 is proved.
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